

Determination of the Sodium Borohydride – Hypochlorite method

Description

 $NaBH_4$ is treated with excess $NaClO_4$. The not reacted $NaClO_4$ is back titrated with $Na_2S_2O_4$ after the addition of KI and the release of iodine.

Instrumentation

Titrator	TL 5000/50-M1, TL 7000 or higher with WA 50	
Sensor	Pt 62, Pt 62 RG or Pt 61	
Cable	L1A	
Stirrer	Magnetic stirrer TM 235	
Laboratory instruments	100 and 500 ml volumetric flasks with stopper	
	250 ml glass beaker tall form	
	10 and 25 ml volumetric pipette	

Reagents

_				
1	Na ₂ S ₂ O ₃ 0.2 mol/L			
2	NaClO 0.18 mol/L			
3	NaOH 0.1 mol/L			
4	Potassium iodide (KI)			
5	H ₂ SO ₄ 25 %			
6	Deionized water			
All reagents should be of analytical grade or better				

Reagents

Na₂S₂O₃ 0.2 mol/L, NaOH 0.1 mol/L and H2SO4 25 %

We recommend ready to use titrant and reagents.

NaCIO 0.18 mol/l

Example: 180 ml NaClO 3,5 % (Cl2) + about 350 ml deionized H2O + 0.5 ml NaOH 0,1 mol/L (for stabilization) are mixed and then filled up to 500 ml in a 500 ml volumetric flask with deionized water.

Titration procedure

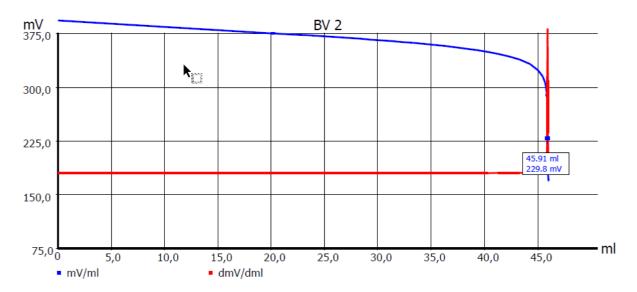
Sample preparation

0.2 - 0.22 g of high concentrated NaBH₄ are weighed exactly into a 100 ml volumetric flask. The sample is dissolved with about 70 ml NaOH 0.1 mol/L shaking the volumetric flask <u>carefully</u>. Fill up to 100 ml with NaOH 0.1 mol/L. This sample solution is only stable for about 1 - 2 hours only.

Pipette 10 ml from the sample solution into a 250 ml glass beaker. Add exactly 25 ml of the NaClO solution. Add a magnetic stirrer bar and stir for 1 minute carefully.

To this solution add 4 - 4.2 g KI and 100 ml deionized water. Mix the sample with higher stirring speed until it is completely mixed. Add 10 ml of the H2SO₄ 25 % carefully to the sample solution.

The released iodine is back titrated with the $Na_2S_2O_3$ 0.2 mol/L titrant. Add the exact sample weighed from the sample solution (0.20950 g in our example).


Carry out two blank titrations before with 10 ml NaOH 0.1 mol/L instead of the sample. Use the average value as blank value.

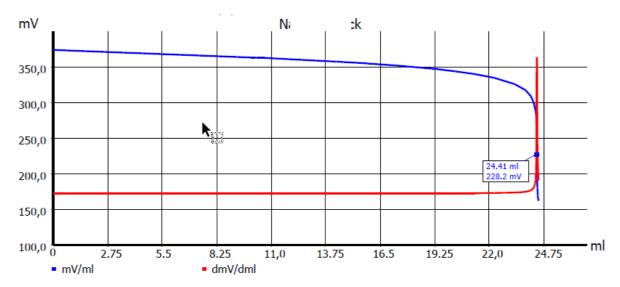
Sensor cleaning

The sensor is cleaned with water.

Titration parameter

Blank

xylem | Titration 145 AN 2


Default method			
Method type	Automatic Titration		
Mode	Dynamic		
Measured value	mV		
Measuring speed / Drift	User defined	Minimum holding time	3 s
		Maximum holding time	15 s
		Measuring time	3 s
		Drift	10 mV/min
Initial waiting time	0 s		
Dynamic	average	Max. step size	1.0 ml
		Slope max ml	10
		Min. step size	0.02 ml
		Slope min ml	120
Damping	Off	Titration direction	decrease
Pre-titration	Off	Delay time	0 s
End value	Off		
EQ	On(1)	Slope value	700 (steep)
Max. Titration volume	50 ml		
Dosing Speed	100%	Filling speed	30 s

Calculation:

$$ml = EQ1$$

The result is stored in the Global Memory as for example M01. It is recommendable to determine the mean of two or three blank titrations (statistic: 2 or 3).

Sample titration

xylem | Titration 145 AN 3

Default method			
Method type	Automatic Titration		
Mode	Dynamic		
Measured value	mV		
Measuring speed / Drift	User defined	Minimum holding time	3 s
		Maximum holding time	15 s
		Measuring time	3 s
		Drift	10 mV/min
Initial waiting time	0 s		
Dynamic	average	Max. step size	1.0 ml
		Slope max ml	10
		Min. step size	0.02 ml
		Slope min ml	120
Damping	Off	Titration direction	decrease
Pre-titration	Off	Delay time	0 s
End value	Off		
EQ	On(1)	Slope value	350
Max. Titration volume	50 ml		
Dosing Speed	100%	Filling speed	30 s

Calculation:

$$NaBH4\,[\%] = \frac{(B-EQ1)*T*M*F1}{V*F2}$$

В	M01	Consumption of titration reagent of the blank determination	
EQ1		Consumption of the titration reagent at the EQ	
Т	WA	Exact concentration of the titration reagent in [mol/L]. 0.2 mol/L	
М	4.72880	Equivalent weight including dilution factor	
W	man	Sample amount [g]	
F1	1	Conversion factor 1	
F2	1	Conversion factor 2	

Tel+ 49 6131 894-5111